112 research outputs found

    PROCAIN server for remote protein sequence similarity search

    Get PDF
    Sensitive and accurate detection of distant protein homology is essential for the studies of protein structure, function and evolution. We recently developed PROCAIN, a method that is based on sequence profile comparison and involves the analysis of four signals—similarities of residue content at the profile positions combined with three types of assisting information: sequence motifs, residue conservation and predicted secondary structure. Here we present the PROCAIN web server that allows the user to submit a query sequence or multiple sequence alignment and perform the search in a profile database of choice. The output is structured similar to that of BLAST, with the list of detected homologs sorted by E-value and followed by profile–profile alignments. The front page allows the user to adjust multiple options of input processing and output formatting, as well as search settings, including the relative weights assigned to the three types of assisting information

    Considering scores between unrelated proteins in the search database improves profile comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Profile-based comparison of multiple sequence alignments is a powerful methodology for the detection remote protein sequence similarity, which is essential for the inference and analysis of protein structure, function, and evolution. Accurate estimation of statistical significance of detected profile similarities is essential for further development of this methodology. Here we analyze a novel approach to estimate the statistical significance of profile similarity: the explicit consideration of background score distributions for each database template (subject).</p> <p>Results</p> <p>Using a simple scheme to combine and analytically approximate query- and subject-based distributions, we show that (i) inclusion of background distributions for the subjects increases the quality of homology detection; (ii) this increase is higher when the distributions are based on the scores to all known non-homologs of the subject rather than a small calibration subset of the database representatives; and (iii) these all known non-homolog distributions of scores for the subject make the dominant contribution to the improved performance: adding the calibration distribution of the query has a negligible additional effect.</p> <p>Conclusion</p> <p>The construction of distributions based on the complete sets of non-homologs for each subject is particularly relevant in the setting of structure prediction where the database consists of proteins with solved 3D structure (PDB, SCOP, CATH, etc.) and therefore structural relationships between proteins are known. These results point to a potential new direction in the development of more powerful methods for remote homology detection.</p

    Structure similarity measure with penalty for close non-equivalent residues

    Get PDF
    Motivation:Recent improvement in homology-based structure modeling emphasizes the importance of sensitive evaluation measures that help identify and correct modest distortions in models compared with the target structures. Global Distance Test Total Score (GDT_TS), otherwise a very powerful and effective measure for model evaluation, is still insensitive to and can even reward such distortions, as observed for remote homology modeling in the latest CASP8 (Comparative Assessment of Structure Prediction)

    COMPASS server for homology detection: improved statistical accuracy, speed and functionality

    Get PDF
    COMPASS is a profile-based method for the detection of remote sequence similarity and the prediction of protein structure. Here we describe a recently improved public web server of COMPASS, http://prodata.swmed.edu/compass. The server features three major developments: (i) improved statistical accuracy; (ii) increased speed from parallel implementation; and (iii) new functional features facilitating structure prediction. These features include visualization tools that allow the user to quickly and effectively analyze specific local structural region predictions suggested by COMPASS alignments. As an application example, we describe the structural, evolutionary and functional analysis of a protein with unknown function that served as a target in the recent CASP8 (Critical Assessment of Techniques for Protein Structure Prediction round 8). URL: http://prodata.swmed.edu/compas

    Loss of muscleblind splicing factor shortens Caenorhabditis elegans lifespan by reducing the activity of p38 MAPK/PMK-1 and transcription factors ATF-7 and Nrf/SKN-1

    Get PDF
    Muscleblind-like splicing regulators (MBNLs) are RNA-binding factors that have an important role in developmental processes. Dysfunction of these factors is a key contributor of different neuromuscular degenerative disorders, including Myotonic Dystrophy type 1 (DM1). Since DM1 is a multisystemic disease characterized by symptoms resembling accelerated aging, we asked which cellular processes do MBNLs regulate that make them necessary for normal lifespan. By utilizing the model organism Caenorhabditis elegans, we found that loss of MBL-1 (the sole ortholog of mammalian MBNLs), which is known to be required for normal lifespan, shortens lifespan by decreasing the activity of p38 MAPK/PM K-1 as well as the function of transcription factors ATF-7 and SKN-1. Furthermore, we show that mitochondrial stress caused by the knockdown of mitochondrial electron transport chain components promotes the longevity of mbl-1 mutants in a partially PMK-1-dependent manner. Together, the data establish a mechanism of how DM1-associated loss of muscleblind affects lifespan. Furthermore, this study suggests that mitochondrial stress could alleviate symptoms caused by the dysfunction of muscleblind splicing factor, creating a potential approach to investigate for therapy.Peer reviewe

    The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis

    Get PDF
    Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency

    DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells

    No full text
    Blastocyst-derived embryonic stem cells (ESCs) and gonad-derived embryonic germ cells (EGCs) represent two classic types of pluripotent cell lines, yet their molecular equivalence remains incompletely understood. Here, we compare genome-wide methylation patterns between isogenic ESC and EGC lines to define epigenetic similarities and differences. Surprisingly, we find that sex rather than cell type drives methylation patterns in ESCs and EGCs. Cell fusion experiments further reveal that the ratio of X chromosomes to autosomes dictates methylation levels, with female hybrids being hypomethylated and male hybrids being hypermethylated. We show that the X-linked MAPK phosphatase DUSP9 is upregulated in female compared to male ESCs, and its heterozygous loss in female ESCs leads to male-like methylation levels. However, male and female blastocysts are similarly hypomethylated, indicating that sex-specific methylation differences arise in culture. Collectively, our data demonstrate the epigenetic similarity of sex-matched ESCs and EGCs and identify DUSP9 as a regulator of female-specific hypomethylation

    Detection of distant evolutionary relationships between protein families using theory of sequence profile-profile comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of common evolutionary origin (homology) is a primary means of inferring protein structure and function. At present, comparison of protein families represented as sequence profiles is arguably the most effective homology detection strategy. However, finding the best way to represent evolutionary information of a protein sequence family in the profile, to compare profiles and to estimate the biological significance of such comparisons, remains an active area of research.</p> <p>Results</p> <p>Here, we present a new homology detection method based on sequence profile-profile comparison. The method has a number of new features including position-dependent gap penalties and a global score system. Position-dependent gap penalties provide a more biologically relevant way to represent and align protein families as sequence profiles. The global score system enables an analytical solution of the statistical parameters needed to estimate the statistical significance of profile-profile similarities. The new method, together with other state-of-the-art profile-based methods (HHsearch, COMPASS and PSI-BLAST), is benchmarked in all-against-all comparison of a challenging set of SCOP domains that share at most 20% sequence identity. For benchmarking, we use a reference ("gold standard") free model-based evaluation framework. Evaluation results show that at the level of protein domains our method compares favorably to all other tested methods. We also provide examples of the new method outperforming structure-based similarity detection and alignment. The implementation of the new method both as a standalone software package and as a web server is available at <url>http://www.ibt.lt/bioinformatics/coma</url>.</p> <p>Conclusion</p> <p>Due to a number of developments, the new profile-profile comparison method shows an improved ability to match distantly related protein domains. Therefore, the method should be useful for annotation and homology modeling of uncharacterized proteins.</p

    Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo

    Get PDF
    Development and differentiation are associated with profound changes to histone modifications, yet their in vivo function remains incompletely understood. Here, we generated mouse models expressing inducible histone H3 lysine-to-methionine (K-to-M) mutants, which globally inhibit methylation at specific sites. Mice expressing H3K36M developed severe anaemia with arrested erythropoiesis, a marked haematopoietic stem cell defect, and rapid lethality. By contrast, mice expressing H3K9M survived up to a year and showed expansion of multipotent progenitors, aberrant lymphopoiesis and thrombocytosis. Additionally, some H3K9M mice succumbed to aggressive T cell leukaemia/lymphoma, while H3K36M mice exhibited differen-tiation defects in testis and intestine. Mechanistically, induction of either mutant reduced corresponding histone trimethylation patterns genome-wide and altered chromatin accessibility as well as gene expression landscapes. Strikingly, discontinuation of transgene expression largely restored differentiation programmes. Our work shows that individual chromatin modifications are required at several specific stages of differentiation and introduces powerful tools to interrogate their roles in vivo
    corecore